首页> 外文OA文献 >EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study
【2h】

EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

机译:基于EmG的模式识别方法用于中风后机器人辅助康复:可行性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background:Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane.Methods:Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE).Results:Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient.Conclusions:The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment.
机译:背景:几项研究调查了肌电图(EMG)信号在基于机器人的中风神经康复中的应用,以增强功能恢复。在这里,我们探讨了基于经典EMG的模式识别方法是否可以用来预测患者的意图,同时尝试在水平面内产生目标定向的运动。方法:9名右撇子健康受试者和7名右撇子中风幸存者进行了在水平面运动。记录了肌电信号,并用于识别对象的预期运动方向。为此目的,使用了标准的模式识别算法(即,支持向量机,SVM)。进行了不同的测试,以了解受试者之间和受试者内部变异性对分类器准确性的影响。通过PCA获得的结果即所谓的表现力系数(CoE)得出的评估指标评估产生异常分类的异常肌肉空间模式。结果:在大多数情况下,处理健康受试者的EMG信号在这种情况下,我们能够为水平面上点对点到达运动建立EMG激活模式的静态功能图。相反,当处理病理对象的EMG信号时,不可能进行良好的分类。特别是,无论是使用从正常受试者的数据中提取的一般地图还是在根据每位患者记录的EMG信号调整分类器时,都无法以足够的精度准确预测患者的目标运动方向。使用EMG模式识别方法来解码中风等神经损伤患者的运动意图可能不切实际。未来的场景应该估计这些信号来检测和解释正常和异常的肌肉模式,并提供有关其正确募集的反馈,而不是估计EMG的运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号